Partial Metric Spaces
M.Bukatin, RK opperman,S.Matthews,H.Pajoohesh
1: Adjustment of the metric axioms

This talk is based on the reference [B&].
We are used to the following definition:
1 Definition. A metric space is a pair (X, d), where d : X x X — R and:
MO: 0 < d(z,y) (nonnegativity),
M1: if x = y then d(z,y) = 0 (= = indistancy),
M2: if d(z,y) = 0 then z = y (indistancy = =),
M3: d(z,y) = d(y,z) (symmetry), and
M4: d(z,z) < d(z,y) + d(y, z) (triangularity).
A pseudometric space is such a pair (X, d) satisfying M0, M1, M3 and M4.

For a metric space, © = y if and only if d(x,y) = 0. Later we retain M2 but drop M1,
leading to the study of self-distances d(x,z) which may not be zero. This is motivated by
the experience of computer science, as discussed below.

We begin with an example of a metric space, and why nonzero self-distance is worth
considering. Let X = 8% = {x : w — S}, the set of all infinite sequences in a set S, and
let ds : X x X — IR be defined by: dg(z,y) = inf{27%:2; = y; for each i < k}. It can be
shown that (S“,dg) is a metric space.

But computer scientists must compute the infinite sequence x, that is, write a program
to print xg, then x1, then x5, and so on. Since x is infinite, its values cannot be printed
in finite time, so computer scientists care about its parts, the finite sequences ( ), (xg),
(xo,71), (x0,21,%2), .... For each k, the finite sequence (xo,...,zy) is that part of the
infinite sequence produced so far. Each finite sequence is thus thought as a partially
computed version of the infinite sequence x, which is totally computed.

Suppose the above definition of dg is extended to S*, the set of all finite and infinite
sequences over S. Then M0, M2, M3 and M4 still hold, But if z is finite then dg(z,x) =
27k > 0 for some k < oo, since x; = x; can hold only if z; is defined. Thus axiom M1
does not hold for finite sequences.

Thus the truth of the statement x = x is unchallenged in mathematics, while in
computer science its truth can only be asserted to the extent to which x is computed.
This article will show that rather than collapsing, the theory of metric spaces is actually
expanded by dropping MI.

An example of the same sort arises from the fact that the location of a point can only
be measured to a tolerance, thus rather than thinking of x € Y, Y a metric space, it is
appropriate to think of the ball N,.(z) = {y : d(x,y) < r}, where r tells how accurately we
could measure the location of z.

2: Partial Metric Spaces.

Nonzero self-distance is thus motivated by experience from computer science. Here is
our generalization of the metric space axioms M0-M4 to introduce nonzero self-distance so
that familiar metric and topological properties are retained.

2 Definition. A partial metric space is a pair (X, p), where p : X x X — R is such that
PO: 0 < p(z,x) < p(x,y) (nonnegativity and small self-distances),
P2: if p(x,z) = p(x,y) = p(y,y) then x = y (indistancy implies equality),
P3: p(z,y) = p(y, z) (symmetry), and



P4: p(z,z) < p(z,y) + p(y, 2) — p(y,y) (triangularity) (see [Ma94]).
These axioms also yield an associated metric space: define dp(z,y) = 2p(z,y) —

p(z,x) — p(y,y).

Then the axioms PO, P2, P3, and P4 for p, imply M0 — M4 for d,. Note how p(y,y)
is included in P4 to insure that M4 will hold for d,,. Thus (X,d,) is a metric space.

Each partial metric space thus gives rise to a metric space with the additional notion
of nonzero self-distance introduced. Also, a partial metric space is a generalization of a
metric space; indeed, if an axiom P1: p(z,x) = 0 is imposed, then the above axioms reduce
to their metric counterparts. Thus, a metric space can be defined to be a partial metric
space in which each self-distance is zero.

It is often convenient to use P4 in the equivalent form p(z, z)+p(y,y) < p(x,y)+p(y, 2).

Why should axiom P2 deserve the title indistancy implies equality? 1If p(z,y) = 0,
then by PO and P3 p(z,z) = p(z,y) = p(y,y), so x =y by P2.

We wish to find as many ways as possible in which partial metric spaces may be said
to extend metric spaces. That is, to apply as much as possible the existing theory of
metric spaces to partial metric spaces, and to see how the notion of nonzero self-distance
can influence our understanding of metric spaces.

Here are three partial metric spaces: The set of sequences studied in the last section,
(S*,dg), is a partial metric space, where the finite sequences are precisely those having
nonzero self-distance.

For a second example, a very familiar function is a partial metric: Let max(a,b) be the
maximum of any two nonnegative real numbers a and b; then max is a partial metric on
IR™ = [0,00). (For P4, if max(a, b, c) = b then max(a, c)+b < b+b = max(a, b) +max(b, c),
if max(a, b, ¢) = a, then max(a, c)+b = a+b < max(a, b)+max(b, ¢); the case max(a, b, c) =
¢ is similar to the second.)

For a third example, for any metric space (X,d), let F(X) be the set X x R™ of
formal balls in X: here (z,r) is thought of and denoted by N, (x), and p(N,(x), Ns(y)) =
d(x,y) +max(r, s). Then the self-distance of N,.(x) is r, and p is a partial metric on F'(X)
(for triagularity, p(INV,(x), Ni(2)) = d(x, z) + max(r,t) < (d(z,y) + d(y, 2)) + (max(r, s) +
max(s, t) — s) = p(N:(x), Ns(y)) + p(Ns(y), Nie(2)) — p(Ns(y), Ns(y)))-

And so partial metric spaces demonstrate that although zero self-distance has always
been taken for granted in the theory of metric spaces, it is not necessary in order to establish
a mathematics of distance. What they do is introduce a symmetric metric-style treatment
of the nonsymmetric relation is part of, which, as explained below, is fundamental in
computer science.

For each partial metric space (X, p) let T, be the binary relation over X such that
x C, y (to be read, z is part of y) if p(x,x) = p(x,y). Then C, is a is a partial order.

Let us now see the poset for each of our earlier partial metric spaces. For se-
quences, * Cg4, y if and only if there exists some k < oo such that the length of z is
k, and for each ¢ < k, z; = y;. In other words, z Ty, y if and only if x is an ini-
tial part of y. For example, suppose we wrote a computer program to print out all the
prime numbers. Then the printing out of each prime number is described by the chain
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() Cag (2) Cug (2,3) Cay (2,3,5) Cgy ..., whose least upper bound is the infinite
sequence (2,3,5,...) of all prime numbers.

For the partial metric max over the nonnegative reals, C,,,x is the usual > ordering.
In F(X) N,(z) T, Ns(y) if and only if Ny(y) C N,(z). (Smaller tolerances and smaller
sets “know” more.)

Thus the notion of a partial metric extends that of a metric by introducing nonzero
self-distance, which can then be used to define the relation “is part of”, which, for example,
can be applied to model the output from a computer program.

3: The Contraction Fixed Point Theorem.

We now consider how a familiar theorem from the theory of metric spaces can be
carried over to partial metric spaces. Complete spaces, Cauchy sequences, and the con-
traction fixed point theorem are all well known in the theory of metric spaces, and can
be generalized to partial metric spaces. The next definition generalizes the metric space
notion of Cauchy sequence to partial metric spaces.

3 Definition. A sequence z = (x,,) in a partial metric space (X, p) is Cauchy if there exists
a > 0 such that for each r > 0 there exists k such that for all n,m >k, |p(x,, xm) —a| < r.
In other words, x is Cauchy if the numbers p(z,,, x,,) converge to some a as n and m
approach infinity, that is, if lim,, j,— 00 P(Zn, m) = a. Note that then lim, o p(zy, z,) =
a, and so if (X, p) is a metric space then a = 0.
4 Definition. A sequence x = (z,,) of points in a partial metric space (X, p) converges to
yin X if limy, oo p(Tn,y) = limpoo p(Tn,2n) = p(y,y).
So if a sequence approaches a point then its self-distances approach the self-distance
of that point.

5 Definition. A partial metric space (X, p) is complete if every Cauchy sequence converges.

6 Definition. For each partial metric space (X, p), f : X — X is a contraction if there is
a k € [0,1) so that for all z,y in X, p(f(x), f(y)) < kp(z,y).

7 Theorem. [Ma95| For a contraction f on a complete partial metric space (X, p) there
is a unique z in X so that f(x) = z. For it, p(z,x) = 0.

Proof: For the last assertion, if f(z) = x then 0 < p(x,2) = p(f(x), f(x)) < kp(x, ), so
p(z,z) = 0. O

The rest of the proof is done later. The fact that the fixed point has self-distance
0, which is trivial in metric spaces, says here that for a computable function which is a
contraction the unique fixed point, which is the program’s output, will be totally computed
(see [Ma95], [Wa]).
4: Equivalents For Partial Metric Spaces.
To discover more about the properties of partial metric spaces we now look at some
equivalent formulations:

8 Definition. A weighted metric space is a metric space (X, d) with a function |-|: X —
[0, 00), satisfying: |z| — |y| < d(zx,y) for all z and y in X.

Let (X,d,|-|) be a weighted metric space, and let p(x,y) = w. Then (X, p)
is a partial metric space, and p(z,x) = |z|. Conversely, if (X, p) is a partial metric space,
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then (Xa dp7 | ’ |)7 where (aS before) dp(xa y) = 2p<.’L‘, y) —p(I,ZL‘) _p(y7y) and |'T| = p(x, x)a

is a weighted metric space. So from either space we can move to the other and back again.

In a weighted metric space the ordering can be defined by = T, y if |z| = d(x,y) + |y|.
My favorite formulation comes next:

9 Definition. A quasimetric space is a pair (X, q) where ¢ : X x X — IR satisfies:
QO0: 0 < g(x,y) (nonnegativity),
Q1: if x = y then g(x,y) = 0 (equality implies indistancy), and
Q4: q(z, 2) < q(z,y) + q(y, z) (triangularity).
A quasimetric space is called t0 if it also satisfies:
Q2: if q(z,y) = q(y,x) = 0 then x = y (indistancy implies equality).

Unsurprisingly, for a quasimetric space (X, q), f : X — X is a contraction if for some
kel0,1), q(f(x), f(y)) < kq(x,y) for each z,y € X.

As quasimetrics are usually not symmetric, we revise our definition of indistancy to be
q(z,y) = q(y,x) = 0. Thus in t0 quasimetric spaces equality is identified with indistancy.
Each quasimetric space has a dual, (X,q*), where we define ¢*(z,y) = q(y,z), and a
symmetrization, (X, q®), where ¢° = q + ¢*. Certainly the dual is a quasimetric space,
and the symmetrization is a pseudometric space, and is a metric space if (X, q) is t0.

10 Definition. A weighted quasimetric space is a quasimetric space (X, q) together with
a weight function |-|: X — [0,00) so that
for all z,y € X, |z| 4+ q(z,y) = |y[ + q(y, z).

For a weighted quasimetric space, let p(z,y) = |z| + ¢(z,y); then (X,p) is a partial
metric space. For (X,p) a partial metric space, (X, ¢y, |- |p), is a weighted quasimetric
space, where g,(x,y) = p(x,y) — p(x,z) and |z|, = p(x,z). (So for any partial metric,
4 (@, y) = ¢p(y, ) = p(,y) — p(y, y)-)

Not every quasimetric space has a weight, |- | (see [Ma94]). But completeness and the
contraction fixed point theorem extend easily to quasimetrics:

11 Definition. A sequence in a quasimetric space (X, q) is Cauchy if for each r > 0 there
is an n € IN such that if n < m,p € IN then q(z,,x,) < r. (X,q) is * — complete if each
Cauchy sequence has a limit in (X, ¢°).

The “switch” from g to ¢° is less odd than it might seem. A sequence is Cauchy in
(X, q) if and only if it is Cauchy in (X, ¢*), if and only if it is Cauchy in (X, ¢®): For if it
is Cauchy in (X, q), for r > 0 find n € IN so that ¢(x,,,z,) < r if n < m, p; then for the
same n and such m,p, ¢*(zm,xp) = ¢(Tp, Tm) < 7 and ¢°(Tm, xp) < 2r. Conversely if it is
Cauchy in (X, ¢*) then it is Cauchy in (X, (¢*)*) = (X, ¢), and if it is Cauchy in (X, ¢®),
then for » > 0 find n € IN so that ¢° (2, x,) < r if n < m, p; then for the same n and such
m,p, Q('xﬂ%xp) S qS(ZL'm,.pr> <T.

But limits are not the same: @max(z,y) = max{0,y — x}, s0 ¢ (2, y) = max{0,y —
z} 4+ max{0,r — y} = |z — y|, the usual Euclidean metric. In (R, gumax), 0 is a ¢, -limit
of each sequence, since for each r > 0, ¢} .. (0, Zm) = Gmax(Tm,0) = 0 < r for each m € IN.
Our definitions are the same as for the metric space (X, ¢®), no new proof is needed for:

S

12 Theorem. For each contraction f on an °-complete t0 quasimetric space, there is a

unique = in X so that f(x) = x.



5: Generalized Metric Topology.

But I hear a rumbling in the back “aren’t limits topological?”
The open balls in a metric space yield a topology called the metric topology. This is
easily generalized to quasimetric and partial metric spaces:

13 Definition. Given a quasimetric space (X, q), x € X, andr > 0, Bi(z) = {y:q(z,y) <
r} is the open ball with center z and radius 7.

For a partial metric p, we let BP(z) = B;y*(x). Thus for a partial metric p, B?(x) =
{y:p(z,y) <p(z,z)+7}.

The usual proof that the open balls in a metric space form a basis for a topology
carries over, essentially unchanged, to any quasimetric space. This topology is denoted 7,
(and 7,, is abbreviated to 7,). In particular, when (X, d) is a metric space then this is the
usual open ball topology.

But there is an key difference due to lack of symmetry: for a metric, 74 = 74+ = 7gs;
for a quasimetric ¢, this does not hold. For example, for r > 0, BImx(x) = {y : max{y —
z,0}<rt={y:y—zx<r}={y:y<z+r}, sor,, ={(—0,a):ac R} and similarly
= {(a,00) : a € R}; ¢;,., is the usual metric on IR, so 7, is its usual topology.

*
dm ax

For all quasimetrics 74+ is the join, 7, V 74«. Of course ¢ = ¢* if and only if ¢ is a
pseudometric, and then the topologies 74, 74+, and 74 are identical. To discuss this array
of topologies in general, we need:

14 Definition. A bitopological space is a triple (X, 7, 7*) such that 7 and 7* are topologies.

Bitopological spaces were first introduced in [Ke], and are discussed in our notation
in [Ko95]. They occur when there is a lack of symmetry.

Each bitopological space (X, 7, 7*) gives rise to a third topology important in the study
of these spaces. It is 7° = 7V 7%, the join of 7 and 7*; 7° is called the symmetrization
topology.

BE/Q(:L*) N 33;2(:1:) C BY (z) C Bi(x) N BY (z), so 7;s = 7, V 74- is a pseudometric
topology, which is metric in the 0 case.

Our definition of partial metric convergence of a sequence (z,) to a point y is
that lim, oo p(2n,y) = lim, oo p(Tn,zn) = p(y,y). This is equivalent to saying that
limy, oo @p(y, n) = 0 = limy, o0 ¢ (Y, 75 ), which happens if and only if for each r > 0,
eventually q,(y,r,) < r and eventually ¢;(y,r,) < r, that is, if and only if x, — y with
in both 7, and Tqz that is, if and only if x,, — y with respect to Tqs- This further reflects
the fact that the quasimetric, partial metric, and metric, contraction fixed point theorems
are equivalent.

In the motivating case of S¥, x,, — =z, for z = (s1,82,...),2, € S¥, if and only
if for each positive integer k, the initial segment (sq,...,s;) is an initial segment of x,,
for large enough n. In the other key example of nonempty closed bounded intervals in
R, for any real number {a} = [a,a] which = lim,,_,«[by,c,] if and only if for each k,
(b, cn] € [a —1/k,a+ 1/k] for large enough n.

The relation = is part of y is also topological; in fact, ¢(x,y) = 0 if and only if in
74, T € cl({y}). (Since ¢(z,y) =0 < (Vr > 0)(y € Bl(x)) & (VI er)(zeT = ye
T).) So C,=C,,, C; the specialization of 7, a reflexive, transitive relation.
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If (X,q) is a t0 quasimetric space, by Q2, (X,7,) is a T space: (zv € cHy}l&y €
c{r}) = x =y, so L, is a partial order. Of course, for metric (like all T1) topologies,
C, is equality.

Thus unlike metrics, quasimetrics and partial metrics give rise to topologies with gen-
eral separation properties. But like metric topologies, these topologies are first countable.

Thus we generalize further by considering quasimetrics and partial metrics going into
powers of [0, oo], rather than simply [0, oc].

We will get our topology by saying that a set is open when it contains a ball of positive
radius about each of its points. Three properties of the set P = {r : r > 0} of positive
reals are centrally important in the use of metrics: for each a,b,r, s,

(Pa) if r € P and r < s then s € P,

(Pb) if r;s € P then for some t € P, t +t<rand t+t <s,

(Pc) if a < b+ r for each r € P, then a < b.

If I has at least two elements then {r € [0,00]’ : r > 0} fails to satisfy (Pb), but a
useful set of positives in [0, 0] is >~ ;(0,00] = {r € (0,00]! : {i : 7(i) # oo is finite} }. Now
we can define:

15 Definition. A wvalue space is a power V = (RT)!, with R = ([0, 00}, +, <, 0, 00) the
extended non-negative reals. (On (R™)! +, <, 0, oo are defined coordinatewise). A set of
positives on V is a nonempty P C V satisfying (Pa)—(Pc). Foraset X, ¢: X x X — V' is
a V-metric if it satisfies conditions MO — M4 of Definiton 1, with V-quasimetrics, V-partial
metrics, etc., similarly defined. A generalized metric space is a V-metric space for some
value space V', together with a set P of positives on V.

The usual proof shows that {T" C X : for each z € T, N,.(z) C T for some r € P} is
a topology which we call 7, p (or simply 7,); see [Ko88], [K004].

Though N, (z) = {y : q(z,y) < r} as expected, we must be careful in defining open
balls: forr € P, x € X, B, ( ) = {y :for some s € P, q(x,y) + s < r}. This reduces to the
usual definition in V = R™

If r € P, then s + s < r for some s € P; for this s, Bs(x) C Ng(z) C B.(z), so
T e€r1,p < foreach z € T, B,.(z) C T for some r € P. Also, open balls are open in
74P, since if y € B,(z) then for some s,t € P, g(xz,y) +s < r and t +t < s. By the
triangle inequality, if ¢(y, z) <t then q(z,2) +t < q(z,y) + q(y,2) +t < q(x,y) +s < r, so
Ni(y) C By(x). As aresult, {B,(x):r € P,x € X} is a base for 7, p.

16 Theorem. (a) A topological space (X, T) is completely regular if and only if it arises
from a generalized pseudometric space.

(b) Every topology arises from a generalized quasimetric space.

(c) A topology 1, p is Ty if and only if q is t0.

(d) A topology is Ty if and only if it arises from a t0 generalized quasimetric space, if
and only if it arises from a generalized partial metric space.
Proof: (a) Let I be a set of continuous functions from (X,7) to R such that whenever
v €T €7, there is an f, v € I so that f(z) =1 and f[X \ 7] = {0}. Let V = (R")! and
P=75,(0,00].

Define d : X x X — V by d(z,y)(f) = | f(z) — f(y)|; we finish by showing 7 = 74 p: If
reTer, thenr=ry . € (0,00, where ry, .(f) =.5and ry, ,.(g) = 00 if g # f; also
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Ny(z) ={y:d(z,y) <r}={y:|f(z) — f(y)| < .5} C T, showing T € 74 p. Conversely if
x €T € 74 p then for some r € > ,(0,00], N,.(z) C T'; for some finite F* C I, r(g) = oo for
g & F,soNu(z) =,cply:lg(z) —g(y)| <r}, a m-neighborhood of x, so T' € 7. Thus 7
and 74, p have the same elements, so 7 = 74, p as required.

(b) Note that for x € T € 7, the characteristic function, xr is continuous to [0, 0]
with Thax+ = {(a, 0] : a € [0,00]}. Also, x7(x) =1, and xp[X \ T] = {0}. Now redo the
proof of (a) with d(z,y)(f) = max{f(z) — f(y),0}.

Not much tinkering is needed to show (c) and (d) or corresponding facts for quasiprox-
imities. O

A somewhat different proof shows that all quasiuniformities arise from generalized
quasimetrics, but only special ones (called “balanced”) arise from generalized partial met-
rics. Here are examples to show variety in the kinds of concepts that can be modeled by
such partial metrics.

Partial metrics were designed to discuss computer programs, and our first example
comes from this area. A type of poset (X,C) called a domain has been defined to model
computation. We now define it; much more can be learned in [AJ]:

A directed complete partially ordered set (decpo) is a poset, (Q, <), in which each
directed subset S has a supremum \/ S (recall that a set S is directed by an order < if
for each r,s € S there is a t € S such that »r < ¢t and s < ¢). For any poset (Q, <), the
way-below relation << is defined by b << a if whenever a < \/ D, D directed, then b < d
for some d € D. A dcpo is continuous if for each a € @, {b: b << a} is a directed set and
a=\/{b:b<<a}l.

The above axioms are best understood by considering the elements of ) as sets of
accumulated knowledge, and interpreting a < b to mean that the knowledge in b implies
that in a. Then (@, <) is a dcpo if, for each directed set of sets of knowledge there is
a set containing exactly this knowledge. The example S* of sequences is a continuous
poset; in it, the union of a directed set of sequences is the sequence with them as initial
subsequences. The closed balls form a continuous poset: the knowledge that a point is
in each of a directed collection of balls is given by the fact that it is in their intersection,
which is a closed ball. Like all continuous posets, these are spaces in which information is
gathered.

For sequences, b << a if and only if b is a finite (initial) subsequence of a, and a is
clearly the supremum of {b : b << a}, so this example (which abstracts the Turing machine)
is a continuous dcpo. For the closed balls, N, (z) << Ns(y) if and only if N4(y) C B, (z),
so {N,(z) : N,(x) << N4(y)} is directed by D and Ns(y) is its D-supremum, so this is also
a continuous dcpo.

Given a poset, its Scott topology, o, is the one whose closed sets are the lower sets
which contain the suprema of their directed subsets. That is, a set C' is Scott closed if
whenever z < y € C then z € C, and whenever D C (C'is directed then \/ D € C (assuming
\/ D exists, as it must for a dcpo).

The Scott topology is seen to be appropriate by thinking of < as the “knowledge
order”, with z > y meaning that = implies y. It is natural to consider a set closed if it
contains all objects implied by each of its elements, and whenever it contains increasing
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amounts of knowledge, it has an element with all this knowledge. For each z € @, the
smallest closed set containing x is {y : y < z}; thus the poset order is the specialization
order of the Scott topology, so it can only arise from a metric if < is equality.

Due to the lack of symmetry embodied in <, it helps to consider a second topology:
the lower topology, w, whose closed sets are generated by the sets of the form {y : y > z}
for x € Q.

In [Ko04] it is shown that for each continuous dcpo, there is a partial metric into a
power of the unit interval, [0,1]7, such that 7, is the Scott topology and 7,- is the lower
topology. Thus the poset order is the specialization order, so in particular (Q, <) = (Q, <,

).

But many other bitopological spaces can be so represented (to be precise, the ones that
so arise are the pairwise Tychonoff spaces; see [Ko04]). It is unclear whether a reasonable
characterization of continuous dcpo’s can be found in terms of partial metrics.

More traditional examples are found by looking at topologies on IR™, the real valued
functions on a set X. The best known of these is the topology of uniform convergence,
given by the metric do (f, g) = sup{|f(z) — g(x)| : z € X}. The partial metric po(f,g) =
sup{max(f(z),g(x)) : © € X} gives rise to this topology, since d,__(f,q) = ||f — 9llccs
the sup norm distance between f and g. By earlier discussion, this splits the topology of
uniform convergence into two subtopologies: 7,_, its lower open sets, and 7,__)=, its upper
open sets.
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